There has been an intensive debate about whether modus ponens fails for indicative conditionals. Less attention has been paid to the question of whether similar examples can be constructed for counterfactuals as well. This is insofar surprising as McGee claimed that the Import/Export principle (which leads to the counterexamples for indicatives) holds also for counterfactuals. So, are there counterexamples to modus ponens for counterfactuals?

Let us recall the setting of McGee’s counterexample. There are three candidates for the 1980 election: the two republicans Reagan and Anderson, and the democrat Carter. The polls see Carter far behind Reagan, with Anderson a distant third. *Prima facie*, McGee’s counterexample can go counterfactual. Suppose I know about the polls but do not receive any relevant information afterwards, perhaps because I go on a safari trip or because I just don’t care. After the time of the election I consider the following argument:

(1) If a republican had won, then if it had not been Reagan, it would have been Anderson.

(2) A republican won.

(3) Therefore, if Reagan had not won, it would have been Anderson.

Given the polls, I will find the premises highly probable although I will dissent from the conclusion. This comes as a surprise: if an inference is classically valid, the uncertainty of the conclusion cannot exceed the sum of the uncertainties of the premises. This puts pressure on the validity of modus ponens for right-nested counterfactuals.

Posted by Moritz.